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Abstract

Gene regulation in bacteria is usually described as an adaptive response to an environmental
change so that genes are expressed when they are required. We instead propose that most
genes are under indirect control: their expression responds to signal(s) that are not directly
related to the genes’ function. Indirect control should perform poorly in artificial conditions,
and we show that gene regulation is often maladaptive in the laboratory. In Shewanella oneidensis
MR-1, 24% of genes are detrimental to fitness in some conditions, and detrimental genes tend
to be highly expressed instead of being repressed when not needed. In diverse bacteria, there
is little correlation between when genes are important for optimal growth or fitness and when
those genes are upregulated. Two common types of indirect control are constitutive expression
and regulation by growth rate; these occur for genes with diverse functions and often seem to be
suboptimal. Because genes that have closely-related functions can have dissimilar expression
patterns, regulation may be suboptimal in the wild as well as in the laboratory.



Introduction

In bacteria, gene regulation is traditionally thought of as an adaptive or homeostatic mechanism that allows
the cell to respond to changing metabolic conditions or to environmental stresses (e.g., Wall et al (2004);
Seshasayee et al (2009)). The underlying rationale is that proteins “should” be made only when needed so
as to conserve cellular resources or because the protein’s activity is detrimental in other conditions. The
classic example is the induction in Fscherichia coli of the lac operon in response to lactose: the lac operon is
required for growth on lactose, and the lac operon is very weakly expressed in the absence of lactose. If the
lac operon is artificially induced in the absence of lactose by adding a non-metabolizable analog of lactose
to the medium, then the expression of the lac operon reduces the growth rate. This reduction in the growth
rate reflects the cost of producing useless proteins instead of useful ones (Stoebel et al, 2008) and also the
detrimental activity of the LacY permease in some conditions (Eames and Kortemme, 2012). The relative
reduction in F. coli’s growth rate due to producing useless proteins seems to vary across growth conditions,
but under low-cost conditions, the cost is approximately the fraction of total protein that is useless (Shachrai
et al, 2010).

Although many specific examples of gene regulation appear to be adaptive under laboratory conditions,
it is not clear whether the regulation of the majority of genes is adaptive. Genome-wide studies in both
bacteria and yeast have found little correlation between changes in expression and the importance of genes
for fitness (Deutschbauer et al, 2011; Giaever et al, 2002; Birrell et al, 2002; Smith et al, 2006). In other
words, most genes are not down-regulated when they are not needed for growth, and conversely, most genes
that are up-regulated do not seem to be important for fitness. This is surprising because under a cost-benefit
model of optimal expression (Dekel and Alon, 2005), the optimal expression level of a gene will be much
lower if there is little or no benefit (or fitness advantage) than if there is a large benefit. Thus, there is a
puzzle as to why adaptive regulation does not seem to be more widespread in bacteria.

There have been several proposals for why genes might be expressed when they are not needed for fitness
or why they might not be induced when they are needed. More precisely, these theories try to explain
why bacteria with apparently non-adaptive regulation have not been out-competed by other bacteria with
more optimal regulation. First, some genes might be expressed in “standby mode” because they will help
the bacterium survive if conditions change (Fischer and Sauer, 2005). Standby control can be thought of
as a way to reduce the delay inherent in adaptive control. If a gene is under adaptive control and is not
expressed at all when it is not needed, then after conditions change and it becomes needed, there is a delay
until enough of the protein is produced to adapt to this new condition. During this delay, the cell might stop
growing or might even die. Thus, uncertainty about the near future implies some possibility of a benefit from
expressing a gene that is not currently needed. If there is a significant chance of obtaining a benefit in the
future then the average future benefit will exceed the (certain) cost of expressing unneeded protein, so the
optimal expression level will be above zero even though the gene currently confers no benefit. Conversely, if
the gene is currently needed but conditions might change in the near future, this reduces the expected benefit
of high expression, and hence reduces the optimal expression level. In other words, optimal standby control
should dampen the dynamic range of expression without changing the pattern. (For a detailed example, see
Supplementary Figure 1.) Thus, optimal standby control cannot explain why there is so little correlation
between relative expression (i.e., when genes are up-regulated) and mutant fitness (i.e., when they are needed
for optimal growth).

A second and related theory is that proteins that are only needed in small amounts might be expressed
constitutively because the cost of adaptive control, such as the cost of making transcription factors, might
exceed the benefit of making less of the protein when it is not needed (Wessely et al, 2011). The cost of
regulation seems small — for example, the Lacl repressor is present at only 20-50 copies per cell (Milo et al,
2010)  so this theory should only apply to weakly-expressed genes that have a low cost of unnecessary
expression.

A third theory related to changing conditions is that microorganisms might use one environmental signal
to “anticipate” another (Tagkopoulos et al, 2008; Mitchell et al, 2009). Here the change in environment is
(somewhat) predictable, rather than being entirely random. For example, for a gut bacterium like Escherichia
coli, a rise in temperature might indicate that it has been ingested and will soon reach an anaerobic environ-
ment (Tagkopoulos et al, 2008), so genes for anaerobic respiration might be induced even though they are
not immediately useful. It is not clear whether anticipatory control of expression is widespread in bacteria.



Fourth, horizontally transferred genes, which are common in bacteria, might lack regulation because of
insufficient time to evolve appropriate regulation in their current host (Lercher and Pal, 2008). However,
only the most recently-transferred genes seem to lack regulation (Lercher and Pal, 2008). Also, regulation
can evolve quickly (Stone and Wray, 2001; Berg et al, 2004), regulation can be conserved across transfer
events (Price et al, 2008), and many horizontally transferred genes are under complex control by multiple
transcription factors (Price et al, 2008). Thus, we doubt that horizontal gene transfer could explain why
there is little correlation between relative expression (i.e., regulation) and mutant fitness genome-wide.

Fifth, the regulation of some genes might be suboptimal or maladaptive because the expression patterns
of those genes are not under strong selection. More precisely, if altered regulation improves relative growth
by less than 1/N. per generation, where N, is the effective size of the bacterial population and the effect
on growth is averaged across natural environments, then this altered regulation is unlikely to take over the
population. Selectively-neutral evolution could also account for some of the complexity of gene regulation
(Lynch, 2007). However, both regulatory sites (Rajewsky et al, 2002; McCue et al, 2002) and the coexpression
of genes (Price et al, 2007) are usually conserved between closely-related bacteria, which implies that the
regulation of most genes is under some selection. Furthermore, in E. coli, over half of all genes are present
at above 0.1 mRNA per cell in a single condition, which corresponds to 30-60 proteins per cell (Lu et al,
2007) or over 1 in 100,000 of all protein molecules in the cell (Milo et al, 2010). Because the fitness cost of
unnecessary expression of a gene is probably at least as great as its proportion of total protein, this implies
that the fitness cost of unnecessary expression of the typical gene is at least 10~° per generation. This is
about the same as the estimated fitness cost of mutations in codon usage that are under selection (Bulmer,
1991). Thus, unnecessary expression of the typical protein should be under selection.

Finally, we propose that non-adaptive regulation is widespread in bacteria, at least in laboratory settings,
because of two major factors. Firstly, bacterial genomes encode far more operons than regulators. In the
typical bacterium, only 4.2% of proteins are predicted to be transcription factors (Charoensawan et al,
2010). With so few regulators, most genes are probably regulated by factors that are not directly related to
their function. We call this mode of regulation indirect control. As an example, bacterial genes are often
regulated by “global” transcription factors that regulate diverse and sometimes functionally-unrelated genes
(Martinez-Antonio and Collado-Vides, 2003). Secondly, bacterial regulatory systems have evolved under very
different conditions than those being tested in the laboratory. If the utility of a gene’s activity correlates
with a functionally-unrelated signal, then regulation by that signal will be selected for in the wild, but this
correlation will probably not be maintained in artificial conditions. So we do not expect indirect control that
evolved in the wild to be adaptive under artificial conditions. In contrast, if there is a direct regulatory link
between an environmental signal and the physiological response, as with the lac operon, then the regulatory
system can perform well outside of the conditions that it evolved under.

To test these various theories of bacterial gene regulation, we collected genome-wide mutant fitness
data and gene expression data from the metal-reducing bacterium Shewanella oneidensis MR-1 across 15
matching conditions. We also examined large compendia of (unmatched) fitness and expression data for
this bacterium. We found that 24% of genes are detrimental to fitness in some laboratory conditions, which
shows that the regulation of many genes is maladaptive in the laboratory. We confirmed that the correlation
between relative expression and mutant fitness is weak, as in our previous study with just four conditions
(Deutschbauer et al, 2011). We ruled out some technical explanations for the weak correlation, such as
growth phase effects on expression, subtle variations in experimental conditions, or genetic redundancy due
to paralogs, and we found little evidence of anticipatory control. As evidence of indirect control, we show
that many genes are expressed constitutively instead of being controlled by transcription factors, or are
regulated by growth rate. Furthermore, for many genes, this regulation seems to be suboptimal and cannot
be explained by standby control. We also show that genes with closely-related functions can have rather
different expression patterns, which suggests that some of them are not under direct control.

To test the generality of our findings, we examined the expression and mutant fitness of biosynthetic genes
in four diverse bacteria — S. oneidensis MR-1, E. coli K-12, the ethanol-producing bacterium Zymomonas
mobilis ZM4, and the sulfate-reducing bacterium Desulfovibrio alaskensis G20. In E. coli, biosynthetic genes
that were required for fitness in minimal media but not in rich media were almost all down-regulated in
minimal media, but in the other three bacteria, this was often not the case. We also compared fitness and
expression data for Z. mobilis ZM4 across 18 matching conditions, and found little correlation between relative
expression and mutant fitness in Z. mobilis ZM4. We conclude that suboptimal regulation is widespread in



bacteria, at least under laboratory conditions.

Results

Many genes are detrimental to fitness in some condition

We collected genome-wide data on mutant fitness and mRNA abundance for S. oneidensis MR-1 grown in
15 matching conditions: Luria-Bertani medium (LB), a defined minimal medium with one of eight different
carbon sources added, minimal lactate medium with one of four different stresses, or anaerobic respiration
of fumarate with two different electron donors. For each condition, we measured fitness using two pools of
mutants that grew for 6-8 generations and we measured gene expression from wild-type cells in exponential
phase (see Supplementary Figure 2 for an overview). To ensure that the growth conditions were identical,
matched fitness and expression experiments were conducted at the same time. We obtained both expression
and fitness data for 3,247 of the 4,467 protein-coding genes in the genome. Of the protein-coding genes that
we do not have data for, 69% (836,/1,220) are essential for growth in LB, are under 300 nucleotides, or are
repetitive elements such as transposases. The mutant fitness for each gene represents the change, across 6-8
generations of growth, in the logs abundance of strain(s) with transposons inserted within that gene. The
fitness values are normalized so that wild-type would have a fitness value of about zero: negative fitness
indicates that the mutant strain is sick (relative to wild-type) and that the gene’s activity is important for
growth in that condition, while positive fitness indicates that the mutant strain has an advantage and that
the gene’s activity is detrimental in that condition.

A few genes are strongly detrimental to fitness during aerobic growth on lactate: strains with insertions
in these genes grow better than most other strains and the gene’s fitness value is above 0.75 (Figure 1A).
Furthermore, strongly-detrimental genes tend to be well-expressed (Figure 1A). Similarly, in all 14 condi-
tions with strongly-detrimental genes, the majority of these genes are expressed above the median gene.
(There are no strongly-detrimental genes in LB.) We also observed a larger number of genes with milder
but potentially-significant detrimental activity. As described previously, we used control experiments to
estimate the reliability of each fitness measurement, which we summarize using a standard normal z score
(Deutschbauer et al, 2011). Across 15 conditions and 3,247 genes, we had 1,172 fitness measurements with
z > 2.5, while we would expect just 302 such cases by chance (P(z > 2.5)-3,247-15 ~ 302). For comparison,
we had 5,034 fitness measurements of significantly sick genes (z < —2.5). In all conditions, the putatively
detrimental genes were more highly-expressed on average than other genes were (Figure 1B), and in 11 of
the 15 conditions, this difference was statistically significant (P < 0.05, binomial test). The high expression
of detrimental genes confirms the fitness data, because it is easier for a gene to exert a detrimental effect if it
is highly expressed. On the other hand, it is not clear why these genes are not down-regulated to eliminate
their detrimental activity.

To examine this issue more broadly, we identified genes that were detrimental to fitness in a compendium
of 195 fitness experiments for S. oneidensis MR-1 (Deutschbauer et al, 2011). Because we were interested
in genes that were detrimental to growth or survival, we removed eight experiments that measured motility,
leaving us with 187 experiments. To increase sensitivity and reduce false positives, we grouped together
fitness experiments that had similar patterns (pairwise correlation above 0.75), giving 38 groups. Within
each group and for each gene, we required an average fitness above 0.4 as well as statistical significance from
combining z scores (P < 0.01 after Bonferonni correction for the number of groups). 798 genes (24% of the
genes for which we have fitness data) were significantly detrimental in at least one group of experiments.
To validate these detrimental genes, we examined adjacent pairs of genes that are cotranscribed in the same
operon. Genes in the same operon often, but not always, have related functions (de Daruvar et al, 2002;
Rogozin et al, 2002; Price et al, 2006), so if one of them is detrimental to fitness then the other should more
often be detrimental. Indeed, one gene in an operon pair was much more likely to be detrimental to fitness
if the other one was (53% versus 17%, P < 107!5, Fisher exact test). This confirms that most of these 798
genes are genuinely detrimental to fitness in some of our laboratory conditions.

These 798 genes that are detrimental to fitness are not simply selfish genes. They include a wide variety
of functions, and they are not significantly depleted in any COG function category (Tatusov et al, 2001) or
TIGR subrole (Peterson et al, 2001) (Fisher exact test, false discovery rate above 0.05). Just 30 of them
are annotated as potentially selfish elements such as transposases, prophages, or restriction systems. 421



of the detrimental genes (53%) are important for growth or survival in another group of experiments in
our compendium (fitness under -0.4 and P < 0.01 after Bonferonni correction). Some of the detrimental
genes are involved in motility, which is consistent with previous reports (Deutschbauer et al, 2011; Langridge
et al, 2009; Koskiniemi et al, 2012) and might reflect our unnaturally well-shaken growth conditions. But
we doubt that motility can account for most of the detrimental genes. We previously measured mutant
motility in S. oneidensis MR-1 by assaying the abundance of mutant strains that reached the outer ring of
a soft agar plate (Deutschbauer et al, 2011). (These are the same experiments that were removed from the
fitness compendium because they did not measure growth or survival.) 34% of the 798 detrimental genes
have a motility “fitness” of under -0.4, as compared to 13% of other genes. Although the detrimental genes
are enriched in motility genes (P < 107!%, Fisher exact test), motility and selfishness together only explain
around a third of the detrimental genes. The regulation of the 421 genes that are sometimes detrimental and
sometimes important for growth — 13% of the genes that we have fitness data for — is suboptimal, at least in
our laboratory conditions, as these genes “should” be repressed when they are detrimental to growth.

To test whether genes tend to be down-regulated when they are detrimental to fitness, we considered genes
that are likely to be detrimental to fitness in one of our 15 matched conditions (z > 2.5) and compared their
expression in that condition to their median expression across all the conditions. We excluded prophages
and other potentially selfish genes from this analysis because we observed the induction of 100 prophage
genes by over 4-fold in nalidixic acid, which is probably a “selfish” response to DNA damage (Qiu et al,
2004). We did not find a significant tendency for genes to be downregulated when they are detrimental to
fitness: the mean relative expression was 0.03 for detrimental genes and 0.06 for other genes (P > 0.1, ¢ test;
n = 1,094 and 45,466, respectively). This shows that the detrimental activity of most of these genes cannot
be explained by optimal standby control: under this model, if genes are expressed because they might be
needed after a change in conditions, then they should still be downregulated (Supplementary Figure 1).

Relative expression is little correlated with fitness

To test if bacterial gene regulation is adaptive genome-wide, we asked if genes are upregulated when they are
needed for fitness and downregulated when not needed for fitness. We first compared differential expression
and the difference of mutant fitness between pairs of conditions. We performed 14 comparisons derived
from our 15 conditions, with aerobic growth in minimal lactate media as the common control. For example,
Figure 2A shows a comparison of relative expression and differential fitness for aerobic growth in acetate
versus lactate. If there was a strong relationship between relative expression and fitness, then genes that
are more important for fitness on acetate than on lactate (i.e., a fitness difference below zero) would also
be upregulated (i.e., an expression logy ratio above zero), and there would be a strong negative correlation
between differential fitness and relative expression. Instead, the correlation is statistically significant but is
very weak (r = —0.15, P < 10715; Figure 2A). In all of the comparisons, the correlation between differential
expresion and fitness is weak (r = —0.15 to +0.11).

We noticed that biosynthetic genes tend to be expressed at lower levels on acetate than on lactate, while
being important for fitness in both conditions. Specifically, 67 putative biosynthetic genes (Peterson et al,
2001) were important for fitness in lactate and acetate (both fitness under -0.75) but not in LB (fitness above
-0.4), and the average logs levels of these genes was 1.1 in lactate and -0.2 in acetate (P < 10712, paired t test).
Low expression of these genes on acetate might reflect the lower growth rate of S. oneidensis MR-1 on acetate
relative to lactate, which implies a lower flux through biosynthetic pathways. After removing biosynthetic
genes, the correlation between differential fitness and relative expression is still very weak (r = —0.08). This
anecdote illustrates that genes that are important for fitness in both conditions might change expression
because of varying flux, so we focused on genes that are important for fitness in one condition but not the
other or on genes that are not important for fitness in either condition.

In most of the comparisons, genes that are important for fitness in just one of the two conditions do tend
to change expression in the expected direction (e.g., Figure 2B). However, over a third of these differentially-
fit genes change expression the “wrong” way (i.e., lower expression on acetate for genes that are important
only on acetate or lower expression on lactate for genes that are important only on lactate). The two
distributions of expression changes (for the two types of differentially-fit genes) overlap considerably, which
can be quantified with the Kolmogorov D statistic, which depends only on the relative ranks of the values
and ranges from 0 for identical distributions to 1 for distributions that do not overlap. For acetate versus



lactate, D = 0.23. For all of our comparisons, there is considerable overlap in the distributions of relative
expression between genes that are sick only in one condition or only in the other (Figure 2C, D = 0.12 to
0.71). In a few conditions, genes that are differentially important for fitness are just as likely to change
expression in the “wrong” direction. For example, of 22 genes that are important for fitness with copper
stress but not without it, 12 are downregulated on copper stress (Figure 2D).

To test the cases where a gene’s expression changes in the opposite direction than expected given the
fitness data, we examined the expression of adjacent genes that are in the same operon. For the comparison
between acetate and lactate, there are 18 operon pairs in which one or both genes are expressed more highly
in one condition but are important for fitness only in the other condition. For 12 pairs, the two genes showed
the same direction of change and for the other 6 pairs, both genes show little change in expression (both
absolute logy ratios were under 0.5). Similarly, we tested operon pairs that include genes that are important
for fitness with copper stress but not without it and are downregulated during copper stress. For six of seven
operon pairs, both genes were downregulated during copper stress, and for the remaining pair, the expression
of both genes was little changed on copper stress (both absolute logs ratios were under 0.25). These findings
confirm the non-adaptive regulation of these genes.

Conversely, many of the genes with large changes in expression are not important for fitness in either
condition. In the comparison of acetate and lactate, of 114 genes that changed expression by four-fold or
more, 70 (61%) have little effect on fitness in either condition (both fitness values between -0.4 and 0.4). For
all of our comparisons, this proportion was at least 60%, with a maximum of 87% for acid stress. To test the
changes in expression for the genes that are not important for fitness, we again examined the expression of
adjacent genes in operons. In 81% of cases (2,309 of 2,835), the other gene was upregulated or downregulated
in the same direction and with an absolute logy ratio of at least 0.5. By chance, we would expect this to
occur only 21% of the time (P < 10715, x? test of proportions). (The expectation is 21% because across our
14 comparisons, expression changes by 0.5 or more in 42% of cases, and the change will be in the correct
direction in half of those cases.)

It is possible that the change in expression of these genes is adaptive because these genes have subtle fit-
ness benefits in one condition but not the other. To test this, we examined genes without strong phenotypes
(fitness between -0.4 and 0.4) and compared the genes that were up-regulated by two-fold or more (relative
to the median across our experiments) to genes that were down-regulated by any amount. Once again we
excluded prophages and other potentially selfish genes. The up-regulated genes had slightly lower average
fitness than the down-regulated genes (-0.01 and +0.001, respectively; P = 0.0002, ¢ test), but the distribu-
tions were quite similar (D = 0.05). The two-fold up-regulated genes were about as likely to be significantly
sick as the down-regulated genes: at a cutoff of z < —2.5, which corresponds to a false discovery rate of 32%
for these genes with mild phenotypes, 2.2% of up-regulated genes and 1.9% of down-regulated genes were
significantly sick. (These proportions are not significantly different: P > 0.2, Fisher exact test). Because
it is difficult to measure very small differences in fitness, we cannot rule out the possibility of subtle fitness
benefits of the up-regulated genes. However, because the up-regulated genes have very similar phenotypes as
the down-regulated genes, and because genes with stronger phenotypes show a modest correlation between
relative expression and fitness, we suspect that the up-regulation of most of the genes without strong fitness
benefits is not, adaptive.

Another way to ask if gene regulation is adaptive is to look at the correlation, for any given gene, between
expression level and mutant fitness across the 15 conditions (see examples in Figure 3A). If a gene is more
highly expressed when it is important for fitness, then we should see a strong negative correlation (e.g., tyrA
in Figure 3A). Instead, the distribution of fitness-expression correlations for all genes is about the same as if
we shuffle the data and compare a gene’s fitness pattern to another random gene’s expression pattern (Figure
3B). The actual distribution is significantly different from the shuffled distribution (P = 0.01, Kolmogorov-
Smirnov test) but the difference is slight, with average correlations of 0.00 and 0.01, respectively.

We used the fitness-expression correlation of each gene to test whether genetic redundancy might be
an explanation for why gene regulation does not appear adaptive. For example, if there are two partially-
redundant genes whose activity is important for fitness in a condition, one of them might be upregulated
in that condition, but knocking it out might have only a subtle phenotype because the other gene is still
active. Such redundancy is often associated with paralogs (although paralogs in S. oneidensis MR-1 often
have detectable phenotypes when mutated (Deutschbauer et al, 2011)). We compared the distribution of
expression-fitness correlations for 392 genes in our data set that have paralogs (above 30% identity) to the



distribution for genes that lack paralogs and found little difference (means of 0.014 versus 0.002, P = 0.4, ¢
test). Thus, genetic redundancy between paralogs does not explain the lack of a correlation between relative
expression and mutant fitness in S. oneidensis MR-1. Also, although we did not test genetic redundancy
more broadly, genetic redundancy cannot explain why genes are often detrimental to fitness.

Overall, when we compare relative expression to differential fitness, either by selecting pairs of conditions
or by examining each gene across all 15 matching conditions, we find that they are weakly correlated. This
strongly suggests that the regulation of many genes is not adaptive under our laboratory conditions.

Genes with close functional relationships are often not coregulated

To confirm that gene expression patterns are often not correlated with a gene’s function, we examined the
coexpression of genes that have closely-related functions but are not in the same operon. Using a compendium
of 195 diverse fitness experiments for S. oneidensis MR-1 (Deutschbauer et al, 2011), we identified 240 pairs
of genes that were highly cofit (correlation of fitness above 0.8), were annotated with the same TIGR subrole
(Peterson et al, 2001), did not belong to the same predicted operon (Price et al, 2005; Dehal et al, 2009),
and were not nearby each other in the genome (not within 10 genes of each other). When we examined the
coexpression of these functionally-related pairs across 329 expression experiments for S. oneidensis MR-1, we
found that they have only a moderate tendency to be coexpressed (Figure 3C). For example, 83% of operon
pairs have a coexpression of 0.5 or higher, but just 43% of the 240 functionally-related non-operon pairs
do. Furthermore, according to gene regulation that was predicted via comparative genomics and manually
compiled in RegPrecise (Novichkov et al, 2010), these functionally-related pairs are usually not coregulated:
of the 240 pairs, there is a regulatory prediction for at least one gene among 97 pairs, and both genes are
predicted to be regulated by the same transcription factor in only 7 cases.

To test this more carefully, we manually examined the 76 pairs of genes with a close functional relationship
but little coexpression (r < 0.3). Thirty six of the 76 pairs had known functional differences or showed
differences in fitness in a few conditions that might explain their limited coexpression (Dataset 2). For
example, genes for both proline and arginine synthesis have the TIGR subrole “Amino acid biosynthesis:
Glutamate family” and show similar fitness in most, but not all, of our conditions. It is not surprising that
they might be regulated differently. These pairs reflect the limited resolution of the functional classification.
Another 18 pairs of genes were from flagellar operons fliKLMNOPQR-fihB, figL1-flaG-fliD-SO_ 3234-fliS,
flgFGHIJ-SO_3239.3-S0 _ 3239.2-fligL2-figL 3, flyBCDE, and figA MN. Some of the differences in expression
of these genes might reflect the sequential activation of different stages of assembly of the polar flagellum,
which has been studied in detail in related bacteria (e.g., (Prouty et al, 2001; Dasgupta et al, 2003)). In
Pseudomonas aeruginosa, seven of these 18 pairs of genes are co-regulated and are in the same “class”
of transcripts (Dasgupta et al, 2003), so it is not clear that these genes are needed at different times.
The remaining 22 pairs of genes were from operons with closely-related functions for which there was no
apparent reason for the expression to differ. Specifically, these pairs of genes were from aromatic amino acid
synthesis operons aroA, aroC, aroE, aro@Q, and aroKB; menaquinone synthesis operons menA, menB, menF,
and menDHCE; branched-chain amino acid synthesis operons ilvGMDA, ilvC, and ilvE; pyrimidine synthesis
genes pyrC, pyrD, and pyrF; methionine synthesis operons metBL and metC; lipid A synthesis genes IpzL
and [pxM; mismatch repair genes mutL and mutS; and chromosome separation genes zerC and zerD. Among
these genes, mutL, pyrD, pyrF, and zerC are in operons with functionally-unrelated genes, while the other
genes listed individually are transcribed separately, as determined using high-resolution “tiling” microarrays
and 5’-end RNA sequencing (see Materials and methods).

If gene regulation evolves to an optimum, then it is difficult to explain why the regulation of these
functionally-related genes or operons would be different, especially for genes that are not cotranscribed
in operons with functionally-unrelated genes. One possibility is that for pathways that have a low cost
of expression, the first and last steps of a pathway should be regulated while the middle steps should be
expressed constitutively  this can be an efficient way to transcriptionally control the flux through the
pathway as demand for its product changes (Wessely et al, 2011). However, a low cost of expression requires
a low level of expression and also that the gene’s activity should not be detrimental to fitness. Instead, we
found that the genes in these pairs tend to be more highly expressed on average than other genes (P < 0.002,
t test, using the median expression of each gene across our 15 conditions) and that they are more likely to
be detrimental to fitness than other genes (P = 0.005, Fisher exact test). Overall, the lack of coexpression



for these genes with closely-related functions appears to be suboptimal, but it is difficult to rule out other
explanations.

Suboptimal control via constitutive or growth-rate regulation of many genes

One explanation for why there is little correlation between fitness and expression is that some genes are
expressed constitutively and are not under adaptive regulation. Using a compendium of 329 expression
experiments for S. oneidensis MR-1, we identified 641 putative constitutive genes (17% of the genes with
expression data) that have relatively constant patterns of expression. According to RegPrecise predictions
(Novichkov et al, 2010), these genes are much less likely than other genes to be regulated by specific tran-
scription factors or by specialized sigma factors (3.6% versus 16.1%, P < 10~'°, Fisher exact test). This
supports the idea that these constitutive genes are not subject to adaptive control.

We also hypothesized that many genes would be regulated by growth rate, because at higher growth
rates, a higher proportion of cellular resources are devoted to transcription and translation (Bremer and
Dennnis, 1996). By looking for genes that were co-expressed with components of the ribosome, we identified
391 genes (10% of the genes with expression data) as putatively growth-regulated. We confirmed that these
genes tend to be regulated by growth, via the stringent response, by examining their promoter sequences
(see Materials and methods).

Constitutive and growth-regulated genes are functionally diverse, and most types of functions are repre-
sented in both sets. For constitutive genes, the only TIGR subrole that is significantly depleted is electron
transport (false discovery rate under 0.05, Fisher exact test). For growth-regulated genes, the only TIGR
subrole that is significantly depleted is anion transport (false discovery rate under 0.05).

Not surprisingly, constitutive genes and growth-regulated genes do not show a correlation between fitness
and expression: across our 15 matching conditions, the two groups have mean fitness-expression correlations
of 0.01 and 0.00, respectively (both P > 0.5, ¢ test). Together these account for 21% of the genes for which
we have both fitness and expression data, so constitutive or growth-regulated expression could explain the
lack of adaptive control for many genes.

These genes might lack adaptive control because the benefit of regulation would be lower than the cost of
making transcription factors to regulate them. In this case, expressing them when they are not important for
fitness should not be costly, so they should be weakly expressed and their activity should not be detrimental
to fitness. However, 49% of growth-regulated genes and 28% of constitutive genes are detrimental to fitness
in some conditions. Furthermore, detrimental genes are more likely than other genes to be growth-regulated
or constitutive (P = 1072 and P = 0.03, respectively, Fisher exact test). Many of the growth-regulated
detrimental genes are involved in motility, which might not be detrimental under more natural conditions.
After removing genes that are important for motility (i.e., motility “fitness” < —0.4), detrimental genes are
still more likely than other genes to be constitutive or growth-regulated (24% vs. 16%, P < 10~*, Fisher
exact test). We did find that constitutive genes are unlikely to be highly expressed: for example, using the
median expression in our matching conditions, only 6% of constitutive genes are expressed two-fold above the
median gene, while 27% of other genes are (P < 1071°, Fisher exact test). 278 of the constitutive genes (54%
of them, or 9% of the genes that we have data for) are expressed less than two-fold above the median gene
in all of our matching conditions and are also not detrimental to fitness in our compendium. Constitutive
expression of these genes might be due to the high cost of regulation. In contrast, growth-regulated genes
tend to be highly expressed, with a median expression in our 15 matching conditions that is roughly 3-fold
higher than for other genes (P < 10~!%, Wilcoxon test). Thus, we found that many of the constitutive genes
and most of the growth-regulated genes have a high cost of expression, which is not consistent with the
cost-of-regulation theory.

Another potential rationale for growth regulation is that these genes have consistent but subtle defects
in growth. In other words, they might always be beneficial to express, but not essential. However, manual
examination of our fitness compendium suggested that growth-regulated genes tend to have variable pheno-
types. Consistent with this, across 187 fitness experiments, growth-regulated genes tended to have a high
standard deviation of fitness, with the average of the standard deviations being 0.87 for growth-regulated
genes and 0.43 for other genes (P < 10715, ¢ test).

Overall, we found that functionally-diverse genes are expressed constitutively or are regulated by growth
rate. Some of these genes are constitutively expressed at low levels without being detrimental to fitness, so



that there might not be a sufficient benefit for adaptive control to evolve. But many other constitutive or
growth-regulated genes have a high cost of expression and have phenotypes that vary across conditions, so
their regulation appears to be suboptimal.

Amino acid synthesis and catabolic pathways account for most of the genes under
adaptive control

To try to identify a subgroup of genes in S. oneidensis MR-1 that might show more correlation between fitness
and expression, we considered only the 832 genes that strongly affect fitness in at least one of our 15 matching
experiments (maximum |[fitness| > 0.75). As shown in Figure 3D, among genes that affect fitness, constitutive
and growth-correlated genes still show no fitness-expression correlation (both P > 0.4, ¢ test), but some of
the other genes do (mean -0.11, P < 10713, ¢ test). Of the other genes that affect fitness (not including
constitutive or growth-regulated genes), 16% have strong negative fitness-expression correlations of under
-0.5 and are probably under adaptive control. Many of these genes are involved in amino acid biosynthesis
(Figure 3E). For example, of the 60 genes with a fitness-expression correlation under —0.5 and an annotated
TIGR subrole, 31 (52%) were involved in amino acid biosynthesis. No other functional category was enriched
in genes with strong fitness-expression correlations, but 11 of these genes are involved in the catabolism of the
carbon sources we used (fadAB, deoC, gnd, edd, zwf, astB, nagABK, and SO _3774). Amino acid synthesis
and catabolic genes might be regulated adaptively because the concentrations of internal metabolites provide
simple indicators of whether their activity is likely to be beneficial, because their importance for fitness varies
strongly across conditions, or because unnecessary expression of these genes is particularly deleterious.

We also considered the hypothesis that the regulation of genes that are more highly expressed would be
under stronger selection and hence that highly-expressed genes would be more adaptively regulated. Genes
that are more highly expressed tend to have a stronger (more negative) expression-fitness correlation, but the
effect is weak (Spearman rank correlation = -0.11, P < 107%). We then considered only the “well-expressed”
genes that have a phenotype in at least one of our matched conditions and which do not affect motility. More
precisely, we considered genes that have a median expression, across our 15 matched conditions, of at least
two-fold above the median gene. Then we removed genes that have fitness between -0.75 and +0.75 in all of
our matched conditions or have motility “fitness” under -0.4. Of the remaining 76 genes, 35 are biosynthetic
genes that are important for fitness in minimal media, and the median expression-fitness correlation of these
biosynthetic genes is -0.49. For the remaining well-expressed genes, the median expression-fitness correlation
is just -0.08, which is significantly weaker than for the well-expressed biosynthetic genes (P < 0.001, Wilcoxon
rank sum test) and is about the same as for the less-expressed genes that have phenotypes (median -0.07;
P > 0.5, Wilcoxon test). Overall, high expression does not seem to be a strong indicator of whether a gene’s
regulation will be adaptive in the laboratory.

Little evidence for anticipatory control

Another possible explanation for the weak correlation between expression and fitness is that the bacterium is
anticipating growth in a different environment (Tagkopoulos et al, 2008; Mitchell et al, 2009). We systemat-
ically looked for evidence of anticipatory control by considering all pairs of our conditions. Given conditions
A and B, if the organism uses A to anticipate B, then genes that are required for growth on B but not on A
should be upregulated on A (relative to a control condition) as compared to genes that are not required for
growth in either condition. We used the median expression across the 15 conditions as the control and tested
the 203 pairs of conditions that have at least 10 differentially-fit genes. We found only two cases of potential
anticipation that were statistically significant (P < 0.01, Wilcoxon test with Bonferonni correction).

The most significant effect was that growth on CAS, a mixture of amino acids, “anticipated” growth
on gelatin (corrected P < 10~%). Rather than being a form of anticipatory control, we suspect that S.
oneidensis MR-1 cannot distinguish growth on the peptides in gelatin from growth on amino acids, so it
expresses genes for taking up peptides whenever amino acids are present. Of the 15 genes that were sick on
gelatin but not on CAS and that were up-regulated two-fold or more on CAS, three are involved in peptide
uptake (SO 1822, SO _3194.1, and SO _3195). These may be examples of indirect control.

The other significant effect was that aerobic growth on pyruvate anticipated anaerobic growth on N-
acetylglucosamine (NAG) with fumarate as the electron acceptor (corrected P < 107%). Of 33 genes that



are important for fitness with NAG /fumarate but not on pyruvate, 7 genes were up-regulated by 1.5-fold or
more on pyruvate. Three of these genes form a hydrogenase operon (SO_ 2099:50 _2097) that is predicted
to be regulated by Crp and Fnr (Novichkov et al, 2010), and three of the other four genes are predicted to be
regulated by Crp or For (cemC, cemA, and eemH). Crp and Fnr are both regulators of anaerobic respiration
in this organism (Saffarini et al, 2003; Cruz-Garcia et al, 2011), and both the Crp and Fnr regulons are
upregulated on pyruvate (both P < 1078, ¢ test) so we speculate that oxygen levels might drop during batch
aerobic growth on pyruvate. Alternatively, there may be another signal for these regulators.

Broadly, we found little evidence of anticipatory control in S. oneidensis MR-1 across our 15 conditions.
A theoretical analysis of anticipatory control suggests that, under a wide range of parameters, optimal
anticipation involves a small response (relative to the response when the anticipated condition actually
occurs) (Mitchell and Pilpel, 2011). So our results should not be seen as evidence that anticipatory control is
not occuring; rather, they suggest that anticipatory control does not strongly affect genome-wide expression
patterns and cannot explain why we observe little correlation genome-wide between mutant fitness and
relative expression.

Variation in expression during the growth phase does not explain the lack of
correlation with fitness

Another potential reason for low agreement between relative expression and mutant fitness is that we mea-
sured expression at one time during the growth curve (in mid-exponential phase), while our fitness data
reflects the importance of the gene throughout the growth curve. For example, if a gene is important for
the early adjustment to growth in a new condition but not afterwards, then at the end of the experiment,
the mutant strains would have reduced abundance and the gene’s fitness would be negative, yet it would
be adaptive for the gene to be less-expressed in mid-exponential phase. In a previous study we examined
growth curves for 48 S. oneidensis MR-1 mutants with a variety of fitness values (Deutschbauer et al, 2011).
Just two mutants grew at a normal rate but with a long lag, and most fitness defects were reflected in the
growth rate during mid-exponential phase. Because most genes that affect fitness are important for growth
during exponential phase when we collected samples for gene expression, growth phase effects are unlikely
to explain why there is little correlation between expression and fitness.

To more directly test how the relationship between expression and fitness might vary with the growth
phase, we measured expression at various points in time during batch growth in rich media (LB) or in
defined medium with lactate or N-acetylglucosamine (NAG) as the carbon source. The correlation between
differential expression and fitness (computed as in Figure 2A) varied across time points, but was never
dramatically tighter than in our original experiments. For lactate versus LB, the original correlation was
—0.11 and the best correlation during the time course was —0.25; for lactate versus NAG, the original
correlation was —0.06 and the best was —0.11; and for NAG versus LB, the original correlation was —0.25
and the best (during the time course) was —0.21. The correlation between differential expression and fitness
also remained moderate if we used the maximum expression of each gene during each time course. (The
correlations were —0.18 for lactate versus LB, —0.06 for lactate versus NAG, and —0.14 for NAG versus LB,
respectively.) Thus, the time at which we measured expression does not explain the low correlation between
differential expression and fitness.

Repression of biosynthetic pathways in rich media is not the norm

To extend our analysis to diverse bacteria, we compared the expression and fitness of biosynthetic genes
between rich and minimal media in four organisms: FEscherichia coli K-12, Shewanella oneidensis MR-1,
the ethanol-producing bacterium Zymomonas mobilis ZM4, and the anaerobic sulfate-reducing bacterium
Desulfovibrio alaskensis G20. As shown in Figure 4, auxotrophic genes genes that are annotated in
biosynthetic pathways (Peterson et al, 2001) and are important for fitness in minimal media but not in rich
media — tend to be upregulated on minimal media in E. coli K-12 and in S. oneidensis MR-1, with average
log, ratios of 1.5 and 0.84, respectively (P < 107'% and P < 0.001, t test). However, in Z. mobilis ZM4 and
in D. alaskensis G20, auxotrophic genes are not upregulated in minimal media (both P > 0.3, ¢ test).
Surprisingly, in S. oneidensis MR-1, 28 of the auxotrophic genes are down-regulated in minimal media,
and 15 of these are involved in nucleotide synthesis. These genes are scattered across 11 different operons
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— guaBA, purC, purEK, purF, purHD, purL, purMN, pyrC, pyrD, pyrE, pyrF — so this pattern has evolved
independently many times. pyrD and pyrFE are in operons with functionally-unrelated genes, but there is no
obvious reason why the other nine operons are not regulated by nucleotide availability. The expression time
courses for LB, lactate, and NAG confirm that the 15 nucleotide synthesis genes are more highly expressed
during log phase growth in LB — which contains nucleotides — than at any phase of growth in defined media.
Although mutants in guaBA do show a mild growth defect in LB, which suggests that their activity might be
required, mutants in the other nucleotide synthesis genes do not. Thus, in S. oneidensis MR-1, the expression
of nucleotide synthesis genes does not respond to the availability of nucleotides or the cell’s requirements for
these genes.

We propose that E. coli K-12 has evolved direct regulation of biosynthetic pathways by the relevant end
products so that it can efficiently utilize many different carbon sources, including amino acids and nucleotides.
In particular, the switch between degrading and synthesizing these compounds may require regulation to
avoid futile cycles in metabolism. In contrast, S. oneidensis MR-1 is adapted for utilizing amino acids but
not nucleotides: it does grow on DNA or on a few nucleosides as carbon sources, but more slowly than
on peptides, and it cannot utilize nucleobases (Serres and Riley, 2006; Pinchuk et al, 2008). A genome-
scale metabolic model suggests that during growth on adenosine, deoxyadenosine, or inosine, it degrades
the ribose or deoxyribose portion and secretes the nucleobases (Pinchuk et al, 2010). If S. oneidensis MR-1
is not adapted to utilizing nucleobases, this might explain why it does not control the expression of these
synthesis pathways by nucleotide availability. Finally, Z. mobilis ZM4 and D. alaskensis G20 do not, as far
as we know, use amino acids or nucleotides as carbon sources and may not have encountered high levels of
amino acids or nucleotides often enough for transcriptional regulation of these pathways in response to those
compounds to be selected for. Overall, we found that biosynthetic pathways are often not downregulated
when their end products are available.

Little correlation between relative expression and fitness in Zymomonas mobilis
ZM4

To test the relationship between relative expression and fitness in another bacterium in diverse conditions,
we collected mutant fitness data and gene expression data for Zymomonas mobilis ZM4 across 18 conditions.
As Z. mobilis ZM4 can only use a few sugars as carbon sources, we studied growth in rich and minimal
media and in various stresses. First, we examined relative expression and differential fitness between pairs
of conditions, with growth in rich media as the common control condition. Across 17 comparisons, the
median correlation between relative expression and differential fitness was just -0.01, so there was little
tendency for genes that were more important for fitness to be upregulated. (The only condition with a
correlation under -0.1 was ethanol stress, with a correlation of -0.22.) Second, uunlike in S. oneidensis MR-1,
in Z. mobilis ZM4 there was no significant difference between the distribution of per-gene fitness-expression
correlations and the shuffled distribution (P > 0.5, Kolmogorov-Smirnov test with 1,568 genes and 1,568
controls). The mean correlations were 0.007 and 0.006, respectively. After removing genes without fitness
effects, constitutively-expressed genes, and growth-regulated genes, the mean correlation remained at 0.007.
Overall, the correlation between expression and fitness was weaker in Z. mobilis ZM4 than in S. oneidensis
MR-1, which might reflect the rather artificial conditions we used, less careful matching of the experimental
conditions for the two assays, or a simpler regulatory system — Z. mobilis ZM4 has just 65 transcription
factors while S. oneidensis MR-1 has 243.

Discussion

We have shown that in diverse bacteria, there is little correlation between when genes are important for
fitness and when they are more highly expressed. The lack of correlation does not result from a mismatch
between when we measured expression and when we measured fitness or from genetic redundancy between
paralogs. In S. oneidensis MR-1, adaptive control seems to be rare except for amino acid synthesis and
carbon source catabolism, and nucleotide synthesis is not under adaptive control. In Z. mobilis ZM4 and in
D. alaskensis G20, few of the biosynthetic genes are under adaptive control, as their expression levels do not
increase in minimal media. In contrast, in E. coli, most biosynthetic genes, of all types, are downregulated
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in rich media. Our results do not seem consistent with the traditional view that most of bacterial gene
regulation is adaptive. We speculate that the traditional view is an over-generalization from the adaptive
regulation of well-studied biosynthetic and catabolic pathways in E. coli and Bacillus subtilis. Instead, our
results suggest that indirect control is widespread and that it leads to suboptimal expression patterns.

Suboptimal control in the laboratory

We have shown that the misregulation of many genes is detrimental to fitness and hence is suboptimal in the
laboratory. 24% of genes in S. oneidensis MR-1 are significantly detrimental for fitness (above 0.4) in some
conditions. Furthermore, detrimental genes tend to be highly expressed, and genes are not downregulated
when they are detrimental (as would be expected under a model of optimal standby control). A change
in logs abundance of 0.4 across seven generations corresponds to a fitness advantage of 4% per generation
(204/7 ~ 1.04). This is far too large a benefit from mutating a gene to be explained by the waste of cellular
resources in making unneeded protein. (Few if any proteins account for 4% of total expression.) Thus, the
activity of many bacterial proteins imposes significant fitness costs in the laboratory, even at wild-type levels
of expression.

Because we measured mRNA levels and not protein levels, we cannot test whether post-transcriptional
regulatory mechanisms are adaptive. However, if post-transcriptional regulation were operating optimally,
then it would eliminate the detrimental activities of proteins. Furthermore, in bacteria, repressing transla-
tion often destabilizes the mRNA (Deana and Belasco, 2005), so regulation of translation would affect the
mRNA levels that we measured. Finally, in E. coli, genes with high mRNA expression tend to have high
protein expression (Lu et al, 2007; Taniguchi et al, 2010), which implies a significant cost of unnecessary
expression even if the protein is inactive. Thus, post-transcriptional regulation cannot explain why much of
transcriptional regulation appears to be suboptimal.

In the laboratory, suboptimal control seems to be more common than adaptive control (Figure 5). Among
the genes from S. oneidensis MR-1 that we have data for, about 8% are constitutively lowly expressed, are not
detrimental to fitness, and do not have a strong correlation between mutant fitness and relative expression.
These genes might lack adaptive control because the cost of regulation would not be worth it. Another 8%
of genes are detrimental to fitness but are important for motility, which is probably an adaptive lifestyle in
the wild but not in the laboratory. Another 1% of genes are detrimental to fitness and are potentially selfish
elements such as prophages or transposons — “selfish” regulation of these genes may benefit the genes and not
the host. Together, these three explanations account for just 17% of genes that we have data for. Another
5% of genes have strong fitness-expression correlations and are probably under adaptive control. In contrast,
48% of genes are under suboptimal control, at least in our laboratory conditions: they are either detrimental
to fitness, without being explained by motility or selfishness, or they are strongly up- or down-regulated
between conditions without being important for fitness in either condition (Figure 5). Another 23% of genes
have little phenotype or change in expression in our conditions, so we cannot determine if their control is
adaptive or not. The remaining 7% of genes had phenotypes in our matched conditions but their expression
was neither strongly adaptive nor strongly suboptimal. As they had a mean fitness-expression correlation
of +0.01 (which is not significantly different from zero, P > 0.4, ¢ test), we suspect that the regulation of
many of these genes is suboptimal as well.

Suboptimal control in the wild

According to our model of indirect control, gene expression responses will be more adaptive if examined
under natural conditions than in the laboratory. Intuitively, we are confusing the bacteria by growing them
in unfamiliar conditions such as high nutrient levels, high cell densities, pure carbon sources, no competition
from other microorganisms, and no predation. Also, indirect control may have evolved because of correlations
between environmental parameters that occur in the wild but not in our laboratory experiments. Measuring
gene expression during slow growth at low cell densities in the presence of other microorganisms seems
challenging. Nevertheless, given the rapid rate of improvements in DNA and RNA sequencing, we hope that
it will soon become feasible.

Although we predict that bacterial regulation will perform better under natural conditions, several fea-
tures of bacterial gene regulation seem likely to be suboptimal in the wild as well. First, we found many cases
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where genes with closely-related functions had rather different expression patterns. Although this appears
suboptimal, for pathways with a low cost of expression, it can be optimal for some steps to be constitutive
and some steps to be regulated (Wessely et al, 2011). Because the genes in our cases tended to have a high
cost of expression, this theory does not seem to apply, and we believe that the regulation of these genes is
suboptimal. However, there could be other explanations that we have not considered. Second, many oper-
ons contain functionally-unrelated genes, which seems suboptimal (de Daruvar et al, 2002; Rogozin et al,
2002; Price et al, 2006). In the stomach bacterium Helicobacter pylori, operons consist predominantly of
functionally unrelated genes (Price et al, 2005; Sharma et al, 2010). Third, although operons tend to be
conserved across related bacteria (Wolf et al, 2001; Ermolaeva et al, 2001), operons are rarely conserved
between distantly-related bacteria, even if they contain functionally-related genes (Itoh et al, 1999). When
operon structures change, gene expression patterns change as well, so it seems unlikely that gene regulation
is optimal both before and after the change (Price et al, 2006). Fourth, theoretical analysis of the transcrip-
tional regulation of biosynthetic pathways suggests that the optimal design is for them to be regulated by
their end product, but many pathways are instead regulated by transcription factors that sense metabolic
intermediates (Chubukov et al, 2012). This seems suboptimal and is also consistent with our proposal that
sensors for the optimal signals might not be available.

Indirect control

We proposed that the low correlation between relative expression and mutant fitness reflects indirect control
of most genes by factors that are unrelated to the function of the gene. We presented more evidence against
alternative models than evidence for indirect control, but we do have two findings that argue for indirect
control. First, many genes, with diverse functions, are expressed constitutively or are regulated by growth
rate. As a class, these genes show no correlation between relative expression and mutant fitness. Second,
genes with a close functional relationship often have rather different expression patterns if they are not in
the same operon; thus, these genes are probably not regulated by the same signals.

We proposed that indirect control occurs partly because of the limited number of regulators present in
bacterial genomes. Indirect and suboptimal control might also evolve more rapidly than adaptive direct con-
trol. For example, specific transcription factors or specific binding sites are not required to evolve constitutive
or growth-regulated control. Indirect control by global regulators may also evolve rapidly: because global
regulators are present at high concentrations, they will bind at low-affinity sites that require relatively-little
information to specify (Sengupta et al, 2002; Lozada-Chavez et al, 2008), so these sites should evolve more
readily than binding sites for other regulators (Stone and Wray, 2001; Berg et al, 2004).

Our theory rests on the empirical observation that bacterial genomes have far more operons than tran-
scription factors. For example, S. oneidensis MR-1 has 4,467 protein-coding genes and around 2,800 tran-
scription units but only 243 transcription factors (5.4% of proteins). What limits the number of transcription
factors in bacterial genomes? There is a roughly linear relationship between the number of proteins encoded
by a bacterial genome and the proportion of genes that encode transcription factors (van Nimwegen, 2003).
The relatively small number of transcription factors in smaller bacterial genomes suggests that the benefits
of additional control would be less than the costs or would be too small for selection to operate. This might
reflect the adaptation of bacteria with small genomes to narrow niches. For example, we found little corre-
lation between relative expression and fitness in Z. mobilis ZM4, which utilizes only three different carbon
sources and has just 65 transcription factors among its 1,892 protein-coding genes. In bacteria with large
genomes, transcription factors are often acquired by horizontal gene transfer (Price et al, 2008), but the ac-
quisition of additional transcription factors might be limited because transcription factors that have similar
DNA binding preferences will interfere with each other (similar to the theory of (Itzkovitz et al, 2006)). If
the acquisition of a transcription factor that senses the relevant signal is selected against, it might take a
long time for a new sensor to evolve.

Alternative explanations for suboptimal control

Although we considered several other explanations for suboptimal control, such as standby control, antici-
patory control, or weak selection on gene regulation, we do not believe that they are sufficient to account
for our results. First, if genes are under standby control and are expressed when they are not important for
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fitness because they might be needed in the future, then they should still be somewhat downregulated when
they are not useful (Supplementary Figure 1), but this is not what we found. Conversely, we found that
genes are not downregulated when they are detrimental to fitness. Second, we looked for evidence that S.
oneidensis MR-1 uses one condition to anticipate growth in another condition, but we found little evidence
of it. Furthermore, anticipatory control is predicted to occur along with adaptive control and to have smaller
effects on expression patterns (Mitchell and Pilpel, 2011). Third, although weak selection might explain why
some of the weakly-expressed genes are constitutive, we found that many genes are strongly detrimental to
fitness in some conditions and that many of the other genes with apparently suboptimal expression patterns
(i.e., growth regulation and/or no correlation between expression and fitness) are highly expressed. The
regulation of these genes should be under strong selection.

Another explanation for suboptimal control and a weak correlation between expression and fitness is that
many promoters are poorly “insulated” from environmental factors (Sasson et al, 2012). Even if genes are
regulated by transcription factors that sense functionally-relevant signals, their expression also fluctuates
due to irrelevant differences in environmental conditions (Sasson et al, 2012). For example, their promoters
might bind other transcription factors at weak sites that evolve neutrally and are not deleterious enough for
selection to remove them (Lynch, 2007). Or the concentration of active transcription factor might fluctuate
due to factors besides the signal that the transcription factor senses.

Poor insulation is like indirect control in that the gene’s expression responds suboptimally to irrelevant
signals, but the effect is proposed to evolve neutrally rather than in response to environmental correlations.
We expect poor insulation to reduce the correlation between when a gene is important for fitness and when
it is more highly expressed, but we are not sure that it can explain why most genes show no correlation at
all. We also showed that constitutive expression and regulation by growth rate are widespread, which does
not fit the insulation theory. Furthermore, we found that many genes can be detrimental to fitness, which
implies strong selection on misregulation, which should remove the interfering sites. On the other hand,
when we considered genes that have a close functional relationship but are not in the same operon, we saw
more coexpression than we might expect from the slight correlation between expression and fitness for most
genes (e.g., compare Figure 3C and 3D). This might be explained by poor insulation — if two promoters are
responding to transcription factors that sense relevant signals, but the concentrations or activities of those
transcriptions factors are affected by irrelevant changes in growth conditions, then expression from those
promoters would be well-correlated with each other yet fitness-expression correlations would be modest.

Another possible reason for the weak correlation between expression and fitness is that optimal control
requires complex combinatorial regulation. Among genes with characterized regulation in F. coli (Gama-
Castro et al, 2011), 962 of 1,641 genes (59%) are regulated by more than one transcription factor. One
possible reason for why combinatorial control is widespread is to make up for the relatively limited number
of sensors. We speculate that combinatorial logic might perform poorly in laboratory conditions. For
example, even if the sensed signals are functionally relevant, the way in which they are combined might be
adapted to natural conditions. We also suspect that combinatorial control implies a rugged fitness landscape
for selection on the promoter region, which might make it difficult for optimal control to evolve.

Overall, we have shown that the regulation of most bacterial genes is not adaptive, at least not as
traditionally understood to involve responding to a physiologically-relevant signal. In S. oneidensis MR-1,
we found that almost half of genes are under suboptimal control in the laboratory, while far fewer are under
adaptive control. To further understand the ecological role of bacterial gene regulation, we will need to
measure fitness and expression under more natural conditions.

Materials and methods

Fitness and expression data for S. oneidensis MR-1

We collected matching mutant fitness and gene expression data for S. oneidensis MR-1 (ATCC 700550) in 15
conditions: aerobic growth in Luria-Bertani broth; aerobic growth in defined minimal media with 8 different
carbon sources (20 mM D, L-lactate, 20 mM pyruvate, 10 mM acetate, 20 mM N-acetylglucosamine (NAG),
5 mg/mL mixed amino acids (CAS), 1 mg/mL gelatin, 0.5% Tween-20, or 7.5 mM inosine); aerobic growth
in defined lactate medium with four different stresses (70 uM copper(II) chloride; 1 mM sodium nitrite; 1.5
1M nalidixic acid, an inhibitor of DNA gyrase; or acid stress at pH 6); and anaerobic growth in a defined
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medium with 20 mM D,L-lactate or 20 mM NAG as the carbon source and 30 mM fumarate as the electron
acceptor. Our defined medium contained 30 mM PIPES buffer, salts (1.5 g/L NH,4Cl, 0.1 g/L KCl, 1.75 g/L
NaCl, 0.61 g/L MgCly-6H20, 0.6 g/L NaHsPO,), Wolfe’s vitamins, and Wolfe’s minerals, at pH 7. For the
stress experiments, the carbon source was 20 mM D,L-lactate. For growth at pH 6, we used 30 mM MES
buffer instead of PIPES. All S. oneidensis MR-1 samples were grown at 30°C with shaking at 200 rpm.

For each condition, we collected gene expression data from wild-type cells and fitness data from two pools
of transposon mutants, and all three cultures for a given condition were initiated at the same time with the
same media. Samples for gene expression were collected in exponential phase, and samples for fitness were
collected after 6-8 doublings of the population. In pilot experiments, it made little difference whether we
collected fitness data in late exponential phase or in stationary phase (data not shown).

For three conditions, we also measured gene expression during batch growth. We collected cells at varying
times after inoculation of batch aerobic growth at ODggg of 0.1 on minimal lactate medium (7 samples and
maximum OD=0.55), minimal NAG medium (6 samples and maximum OD=1.6), and LB (7 samples and
maximum OD—4.0).

For fitness experiments, strain abundance was quantified using a microarray as described previously
(Deutschbauer et al, 2011). Briefly, we extracted genomic DNA, used PCR to amplify the tags that “barcode”
each strain, hybridized the amplified tags to a Affymetrix 16K TAG4 array, and scanned the array (Pierce
et al, 2007). Each strain’s barcode actually contains two different tags — we amplified the “uptags” from one
pool and the “downtags” from the other pool, mixed them together, and hybridized them to one array.

Fitness values for each strain were computed from the logs ratio of abundance after growth versus the
start of the experiment. Fitness values for each gene were the average of the per-strain values. Because
we use two pools of mutants that are grown and assayed separately, and because some strains are present
in both pools, we can verify the reliability of a fitness experiment by asking whether strains gave similar
values from both pools. We quantified this by looking at the correlation of these strains’ fitness values across
the two pools. In our typical fitness experiment for S. oneidensis MR-1, the correlation of strain fitness
values was 0.92, and all experiments had correlations above 0.8 except for NAG /fumarate (r = 0.66). In
the NAG /fumarate experiment, pairs of genes in the same operon did have well-correlated fitness values
(r = 0.66, as compared to = 0.63 in our typical experiment).

We believe that the phenotypes of these mutants are usually due to the loss of protein function. First,
for 1,646 of the genes, we have fitness data for strains with insertions at more than one location within that
gene, and the fitness data for different insertions within a gene are quite consistent (r = 0.87 to 0.97 in
the 15 experiments). Second, we previously complemented 10 of these mutants, including seven insertions
within hypothetical proteins (Deutschbauer et al, 2011). Third, a caveat in using mutants with transposon
insertions is that the phenotype can be due to polar effects, in which the mutation in an upstream gene affects
the expression of downstream genes in an operon. We previously showed that insertions within upstream
genes often lack the phenotypes of insertions within downstream genes, which suggests that polarity is not
a dominant factor in these pools of mutants (Deutschbauer et al, 2011). Also, for studying whether the
expression pattern of an operon is adaptive or not, it is not essential to know which gene in the operon is
responsible for the observed phenotype.

To quantify gene expression, we used a 12-plex Nimblegen microarray in which each sector has 122,643
spots and 40,881 distinct probes as described previously (Deutschbauer et al, 2011). Briefly, we used
RNAProtect (Qiagen), isolated total RNA (RNAeasy mini kit, Qiagen), prepared first-strand labeled cDNA
(SuperScript Plus Indirect cDNA Labeling Module, Invitrogen), and hybridized the labeled cDNA to the
microarray according to Nimbelegen’s instructions. Within each experiment, the log-level of expression of
genes in the same operon was highly correlated (r = 0.75-0.88 for matching experiments, but growth curve
experiments had values as low as 0.62). Furthermore, in each comparison of gene expression between aerobic
growth in lactate and one of the other 14 matched conditions, the log-ratios of genes in the same operon
were highly correlated (r = 0.80 — 0.90).

Compendium of expression data for S. oneidensis MR-1

We obtained 371 expression experiments from the MicrobesOnline web site (Dehal et al, 2009), derived
primarily from (Liu et al, 2005; Faith et al, 2008; Deutschbauer et al, 2011) and similar works. We removed
experiments and genes with a high proportion of missing values, leaving data for 3,844 genes across 329
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experiments.

Constitutive and growth-regulated genes in S. oneidensis MR-1

We classified genes as constitutive if the standard deviation of their logs expression ratios, across 329 con-
ditions, was under 0.5. Although this threshold is somewhat arbitrary, it was validated by the finding that
few of these genes are predicted to be regulated by specific factors.

To identify growth-regulated genes, we examined the expression patterns of 24 essential protein compo-
nents of the ribosome (rpIBCDFJLMNORTWX and rpsBEHIJLMNPQS). As expected, these genes are quite
coexpressed, with a median pairwise correlation of 0.83. We used the average expression profile of these ribo-
somal genes to identify other putatively growth-correlated genes. Specifically, we identified 391 genes whose
coexpression with the profile is above 0.5, including all of the original 24 genes. These “growth-regulated”
genes are only slightly less likely than other genes to be regulated by specific transcription factors according
to RegPrecise (10.7% vs. 14.4%, P = 0.054, Fisher exact test). Nevertheless, we can confirm that they are
growth-regulated by examining their promoter sequences. In FE. coli and presumably in S. oneidensis MR-1
as well, the growth regulation of ribosomal protein genes is mediated by the alarmone ppGpp and the DksA
protein as part of the stringent response (Lemke et al, 2011). DksA binds to RNA polymerase and alters
the efficiency of transcription initiation depending on various factors including the concentration of the first
(initiating) nucleotide and a GC-rich “discriminator” between the -10 box and the initiation site (Paul et al,
2004; Travers, 1980; Haugen et al, 2006). We used a combination of high-resolution “tiling” microarrays and
5" RNA-Seq to map the exact 5’ ends of transcripts for 1,236 genes or operons from S. oneidensis MR-1 (see
below). We found a substantial difference in the initiating nucleotides between growth-regulated and other
transcripts: just 25% of growth-regulated transcripts begin with adenosine, while 51% of other transcripts
do (P < 1077, Fisher exact test). The putative growth-regulated promoters also have a higher GC content
at positions -4 to -1 than other promoters do (68% vs. 55%, P < 107>, t test). Thus, many of the putative
growth-regulated promoters in S. oneidensis MR-1 are affected by the stringent response.

Transcript structures of S. oneidensis MR-1

We grew S. oneidensis MR-1 in minimal lactate media and collected high-resolution “tiling” microarray data
and performed RNA sequencing targeting the 5’ ends of transcripts, using protocols described previously
(Price et al, 2011). Briefly, we extracted RNA from frozen cell pellets using RNeasy miniprep columns with
DNase treatment (Qiagen), confirmed RNA quality with Agilent bioanalyzer, and depleted ribosomal RNA
with MICROBExpress kit (Ambion). For the tiling experiment, we then created labeled first-strand cDNA
with SuperScript (Invitrogen) to hybridize to an a microarray (Nimblegen) with 2.01 million probes of 60
nucleotides each. For the 5 RNASeq experiment, we used terminator 5’-phosphate-dependent exonuclease
(Epicentre) to remove degraded transcripts, converted 5’-triphosphate to 5’-monophosphate ends with RNA
5" polyphosphatase (Epicentre), ligated adapters onto the 5’ end with T4 RNA ligase (Ambion), used random
hexamer primers that also included a sequencing adaptor to create cDNA, and used PCR amplification to
enrich for DNA that contained both adaptors (see (Price et al, 2011) for details). The 5 RNA-Seq data
(Illumina) gave 21.5 million reads that mapped uniquely to the genome. To identify transcript starts,
we combined local peaks in the 5" RNA-Seq data with sharp rises in the tiling data (Price et al, 2011).
Specifically, we used local peaks in the 5" RNA-Seq data that had at least 50 reads and we required these
starts to be within 30 nucleotides of a sharp rise in the tiling data that had a local correlation to a step
function (Giiell et al, 2009) of at least 0.8. We associated a transcript start with a gene if it was up to 200
nucleotides upstream of the 5’ end of the gene. For transcript start analyses, we considered only genes on
the main chromosome.

Fitness and expression data for Z. mobilis ZM4

Our standard growth condition for Z. mobilis ZM4 (ATCC 31821) was aerobic growth at 30°C in a rich
medium with 25 g/L glucose, 10 g/L yeast extract, and 2 g/L. KHoPO,4. We collected fitness and expression
data for Z. mobilis ZM4 grown in this condition and with various inhibitory compounds added, namely 0.45%
furfuryl alcohol, 4 mM 4-hydroxybenzaldehye, 5-10 mM 3-hydroxybenzoic acid, 7% ethanol, 0.09%-0.12%
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acetic acid, 0.2% acetic acid, 7.5 mM 5-hydroxymethylfurfural, 1% butanol, 9.9-12.5 mM furoic acid, 17-26
mM levulinic acid, 0.1-0.2 M NaCl, 3-6 mM hydroquinone, 0.0004-0.00055% hydrogen peroxide, 2.5 mM
vanillin, or a complex stress provided by 6-8% hydrolyzed plant material. Some of the concentrations are
given as ranges because the fitness experiments were done at more than one concentration or at a different
concentration from the expression experiments. If the fitness experiments were done at more than one
concentration or more than once then we averaged them. The correlation of the per-gene fitness values from
experiments with different concentrations of the same inhibitor was usually above 0.8, with one exception.
We also collected fitness and expression data for growth in rich media at 37°C and for growth at 30°C
in a defined medium containing 20 g/L glucose, salts, and vitamins (Goodman et al, 1982). Fitness was
measured using a similar approach as in S. oneidensis MR-1; the two pools of transposon insertions that we
used will be described in more detail elsewhere (J.M.S. et al., submitted). Most of the fitness experiments
for Z. mobilis were part of this other study; the fitness experiments that are specific to this study were for
7% ethanol, 1% butanol, and growth at 37°C. In the typical experiment for Z. mobilis ZM4, the correlation
of strain fitness values between the two pools was 0.94, and all experiments had correlations above 0.8. We
measured gene expression with a microarray from Nimblegen with 51,851 probes for 1,882 genes, using the
same protocols as for S. oneidensis MR-1. Within each experiment, the log-level of expression of genes in the
same operon was correlated (r = 0.58-0.82). Also, for each experiment, the log-ratio of expression between
that condition and the rich media control was correlated for genes in the same operon (r = 0.59-0.79).

Constitutive and growth-regulated genes in Z. mobilis ZM4

We considered genes in Z. mobilis ZM4 to be constitutively expressed if the standard deviation of their
absolute expression level, across our 18 conditions, was under 0.2. This accounted for 117 genes (7% of the
genes that we had both expression and fitness data for). We identified growth-regulated genes by taking
the average expression profile of 48 ribosomal proteins and identifying genes that were coexpressed with this
profile (r > 0.5). This selected 352 genes (22% of the genes that we had both expression and fitness data
for).

Fitness and expression data for D. alaskensis G20

We grew D. alaskensis G20 (provided by Terry Hazen, University of Tennessee, Knoxville) anaerobically at
30°C in a defined lactate-sulfate medium (LS4D) and in a similar medium supplemented with yeast extract
(LS4), as described previously for D. vulgaris Hildenborough (Price et al, 2011). We collected fitness data
using a similar approach as in S. oneidensis MR-1; the two pools of transposon insertions that we used
will be described in more detail elsewhere (J.V.K. et al., in preparation). Unlike in S. oneidensis MR-1 or
Z. mobilis ZM4, we used separate chips to assay the two pools for a given condition: for each sample, we
amplified both the uptags and the downtags and we hybridized those to the same array. We averaged the
logs intensities of the up- and down-tags together before further processing. In both rich and minimal media,
strain fitness was highly consistent between the two pools (r = 0.94 and r = 0.97, respectively).

We measured gene expression in D. alaskensis G20 with a high-resolution “tiling” microarray (Nimblegen)
with 2.1 million 60-mer probes, using the same protocols as with the S. oneidensis MR-1 tiling array. We
considered only probes for the coding strand of genes, we used quantile normalization to put the two data sets
into the same distribution, and we averaged the normalized log, intensities across the probes for each gene.
Genes in the same operon had highly-correlated expression differences between rich and minimal medium
(r =0.87).

Analysis of mutant fitness data

In previous work on fitness data from S. oneidensis MR-1 (Deutschbauer et al, 2011), we normalized the
fitness values so that the median strain had a fitness of zero. Because there can be differential efficiency in
extracting DNA of different sizes, we did this separately for the main chromosome and the megaplasmid. We
had found that some experiments had significant effects depending on which microplate the strain was grown
on during assembly of the pools, so we also normalized the data so that each “pool plate” had a median
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fitness of zero. Here, we used pool-plate normalization for S. oneidensis MR-1 and for Z. mobilis ZM4, but
it was not needed for D. alaskensis G20.

We also identified a small trend by chromosome position in some fitness experiments. Specifically, there
was sometimes a correlation between fitness and the distance from the origin of DNA replication. This might
result from collecting the start and end samples at different growth stages — if the cells are rapidly dividing
then the area near the origin of replication will be at higher copy number. To remove this effect, for strains
on the main chromosome, we computed a smooth estimate of how the fitness of each strain varied with
chromosomal position (using the loess function in R) and we subtracted this from the fitness values.

It appears that the median gene in Z. mobilis ZM4 has a fitness defect in most conditions. For example,
in all of our experiments, the median fitness of genes with annotated functions was below the median fitness
of purely hypothetical proteins. This might reflect its relatively small genome (1,892 proteins). Thus, setting
the median gene’s fitness to zero was not appropriate. Instead, for genes on the main chromosome, we set
the mode of the distribution to zero. (More precisely, we estimated the mode by finding the maximum of
the kernel density, using the density function in R with default settings, and we subtracted the mode from
the values.) Mode-based centering typically lowered the fitness values by around 0.1. We used mode-based
centering for S. oneidensis MR-1 and D. alaskensis G20 as well, although it made less difference for those
organisms.

To identify genes with strong effects on fitness, we used a threshold of £0.75. A fitness of +0.75 cor-
responds to around a 7% change in abundance per generation. Effects above this magnitude were usually
statistically significant. For example, in the 15 matched experiments in S. oneidensis MR-1, genes with
fitness effects of £0.75 or stronger have |z| > 2 in 83%-99% of cases (95% in the median experiment).

Fitness z scores were computed as described previously. Briefly, we used a t-like test statistic for each
gene to summarize the consistency of the measurements for its strains. This statistic also takes into account
how noisy the data for other genes appears to be. Then, we transformed the test statistic to fit the standard
normal distribution by using “fitness” data from control experiments in which we independently recovered
the pools from the freezer and assayed their relative abundance (Deutschbauer et al, 2011).

To identify genes with more subtle but reproducible effects on fitness, we grouped together experiments
with similar patterns (those having a pairwise correlation of above 0.75). For each group, we used Fisher’s
method to combine the significance of genes (as assessed using z scores). For each gene, we corrected for
multiple testing across groups.

Statistical tools

All statistical analyses were conducted in R 2.11 or 2.13 (http://r-project.org/). Data was visualized in R
and in MicrobesOnline (Dehal et al, 2009).

Data availability

All fitness data is available in MicrobesOnline (http://microbesonline.org/). Fitness data for S. oneidensis
MR-1 is also availabe as Dataset 1. All gene expression, tiling, and 5" RNA-Seq data are available in the
Gene Expression Omnibus, including expression data for S. oneidensis MR-1 (GSE39462), tiling data for S.
oneidensis MR-1 (GSE39468), 5 RNA-Seq data for S. oneidensis MR-1 (GSE39474), expression data for Z.
mobilis ZM4 (GSE39466), and tiling data for D. desulfuricans G20 (GSE39471). All data and source code
are available from the authors” web site

(http://genomics.1bl.gov /supplemental /exprVfitness2012/).
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Figure Legends

A. Expression vs. Fitness B. Expression of Detrimental Genes
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Figure 1 In Shewanella oneidensis MR-1, genes that are detrimental to fitness are highly expressed. (A)
Absolute expression level and mutant fitness during aerobic growth in minimal lactate medium. The median
gene’s expression is set to 0. Genes with significant fitness effects (]z| > 2.5) are color-coded. The dotted
vertical line at 0.75 demarcates seven strongly-detrimental genes. (B) In all 15 conditions, genes that are
detrimental to fitness (z > 2.5) tend to be expressed more highly than the typical gene. The vertical line
shows the proportion that we would expect by chance (50%). NAG is N-acetylglucosamine and CAS is
casamino acids. Error bars are 95% confidence intervals (binomial test).
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B. Relative Expression of
Differentially—Fit Genes
on Acetate vs. Lactate
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Figure 2 In Shewanella oneidensis MR-1, differential fitness and relative expression are poorly correlated.
(A) Relative expression versus the difference in fitness for aerobic growth on acetate versus aerobic growth
on lactate. Genes are color-coded if they are important for fitness on acetate or lactate but not the other
condition (specifically, if fitness is below -0.75 in that condition but not in the other condition and if the
difference in fitness between the conditions is at least 1.0). (B) Another view of the relative expression from
panel A: the distribution of relative expression for genes that are only important on acetate, only important
on lactate, or other genes. Out-of-range values are included in the left- or right-most bins. The vertical lines
show the averages for genes that are important only in acetate (in red) or only in lactate (in green). The
average upregulation of these two types of genes differs by 0.39 and the distributions overlap considerably
(D =0.23). (C) The change in expression of differentially-fit genes in each of 14 conditions when compared
to aerobic lactate. Each comparison is performed as in panel B: the = axis shows the difference between the
two averages and the y axis shows the Kolmogorov-Smirnov D statistic for how distinct the two distributions
are. The arrow highlights the comparison between acetate and lactate from panel B. (D) Relative expression
versus the difference in fitness for cells growing in minimal lactate medium with or without copper added.
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Figure 3 TIn Shewanella oneidensis MR-1, few genes are under adaptive control. (A) Absolute expression
versus fitness for tyrA and purH across 15 growth conditions. The lines show the best fit for each gene: tyrA
tends to be expressed more highly when it is more important for fitness (r = —0.50), but purH does not
(r = —0.01). (B) The distribution of fitness-expression correlations, computed as in panel A, for 3,247 genes
and for 3,247 shuffled controls. (C) The distribution of coexpression, across 329 experiments, of pairs of
genes that are not in the same operon and have closely-related functions (i.e., matching TIGR subroles and
similar patterns of mutant fitness across 195 experiments). We also show the distribution of coexpression
for genes that are predicted to be in the same operon, as a positive control, and for random pairs of genes
that have different TIGR subroles and are not adjacent or predicted to be in the same operon, as a negative
control. (D & E) The distribution of fitness-expression correlations (as in panel B) when considering only
genes that have fitness of above 0.75 or below -0.75 in at least one of the 15 conditions. In (D), we separate
out constitutive and growth-regulated genes from other genes, and the green arrow highlights the adaptive
regulation of some of the other genes. In (E), the genes are classified by their TIGR roles, which highlights
the adaptive control of amino acid synthesis genes but not other genes.
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A. Escherichia coli K-12 B. Shewanella oneidensis MR-1
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Figure 4 Biosynthetic pathways are upregulated in minimal media in some bacteria but not in others.
We examined whether auxotrophs were upregulated in minimal media, as compared to other genes, in (A)
Escherichia coli K-12; (B) Shewanella oneidensis MR-1; (C) Zymomonas mobilis ZM4; and (D) Desulfovibrio
alaskensis G20. In all four organisms, the auxotrophs are annotated by TIGR role as being involved in amino
acid, nucleotide, or cofactor synthesis, and experimental data confirms that they are important for growth
in a defined medium but not in rich medium. For E. coli K-12, we used growth data of deletion mutants
from the Keio collection (Baba et al, 2006) and expression data from (Allen et al, 2003). For the other
organisms, we collected fitness data using pooled transposon mutants and we collected gene expression data
using microarrays. Genes were considered important only in defined medium if their fitness was below -0.75
in defined medium but not in rich medium and the difference in fitness was at least 1. The expression logs
ratios are normalized so that the median value is 0. Logs ratios that are below -2 or above 2 are included in
the left- or right-most bins, respectively.
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Type of Control
3,247 genes from S. oneidensis MR-1
with fithess and expression data

# Genes
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Figure 5 Adaptive, low-cost, or suboptimal control of genes in Shewanella oneidensis MR-1. Among the
genes with both fitness and expression data, we classified their control by the following criteria. If a gene fit
into multiple categories, it was counted only in the first (top-most) category. First, we classified genes as being
under adaptive control if the fitness-expression correlation, across 15 matched conditions, was under -0.5. We
used a threshold of -0.5 because this is roughly where the actual distribution of fitness-expression correlations
diverges from the shuffled distribution (Figure 3B); also, 53% of amino acid synthesis genes are below this
threshold. We classified genes as constitutive and low cost if they had a low standard deviation of expression
(in a large compendium), they were not detrimental to growth (in 38 groups of fitness experiments), and their
absolute expression level was at most 2-fold above the median gene in all of our 15 conditions. Genes that
are significantly detrimental to growth in one or more of 38 groups of fitness experiments were sub-classified
into genes that are important for motility (motility “fitness” below -0.4), selfish genes such as transposons,
prophages, and restriction elements, or other unexplained genes. Genes were considered to change expression
without being important for fitness if, in any of 14 comparisons between conditions, the expression changed
by two-fold or more but the fitness value was between -0.4 and 0.4 in both conditions. The remaining genes
were classified as having little phenotype or change in expression if their fitness value was between -0.75 and
+0.75 in all 15 matched conditions.
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A. Optimal Adaptive Control B. Optimal Standby Control
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Supplementary Figure 1 — Optimal control under constant or unpredictably-varying conditions.
We consider a protein with a maximum benefit (not including the cost of expression) of 0.2 per generation
and which reaches half-maximal benefit at 0.0005 of protein (solid green line). The parameters are arbitrary,
but we assume that the benefit of the protein saturates because this arises naturally in metabolic models
and has been confirmed experimentally (D. Fell, “Understanding the Control of Metabolism,” Portland
Press, 1997). (Intuitively, once a metabolic enzyme is highly expressed, increasing its expression further
will increase the concentration of its product, but unless the expression of downstream enzymes is increased
as well, downstream enzymes will become saturated and total flux through the pathway will only increase
slightly.) We conservatively assume that the protein has no detrimental activity when unneeded and that
its cost of protein production is equal to the amount of protein (blue line). (A) Optimal adaptive control
when conditions rarely change. The optimum expression maximizes benefit minus cost (green circle), and
the fitness cost of disabling the protein is the difference between the two (red arrow). But when the protein
is not beneficial, the optimal expression level is 0. (B) Optimal “standby” control under unpredictably
varying conditions. We consider two situations with unpredictable future changes in conditions. In the first
situation, the protein is currently beneficial, but this may not continue, so on average, the benefit is just
80% of the benefit under constant conditions (dashed green line). In the second situation, the protein is
currently not beneficial, but conditions may change, so on average, the benefit is 20% of the benefit under
constant beneficial conditions (dotted green line). The expression level that maximizes benefit minus cost in
each situation is shown (green circles). The range of expression is less than in (A), but the expression level
still changes (black arrow). Intuitively, because the cost of expressing a small amount of unneeded protein
is small relative to the potential benefit, it is beneficial to gamble on making a small amount of the protein.
And because of diminishing returns to making more of the protein, the optimal expression level is higher
when the benefit is higher. However, under constant conditions with no benefit, standby expression of the
protein incurs a cost and fitness is reduced (red line).
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Supplementary Figure 2 — Matched measurements of mutant fitness and gene expression in
Shewanella oneidensis MR-1. Each pool of mutants contains about 4,000 strains, and each strain has a
transposon inserted at a different location in the genome and a tag that allows that strain to be distinguished
from the other strains in that pool (Oh et al. 2010).
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Dataset 1 — Fitness data for Shewanella oneidensis MR-1

The first tab shows the metadata for the fitness experiments; the Experiment number is the heading in the
other tables. The remaining tabs show the per-strain fitness values, the per-gene fitness values, and the
per-gene z scores. In these tables, the locusld is the MicrobesOnline (“VIMSS”) identifier and the sysName
is the LocusTag.

Dataset 2 — Pairs of functionally-related genes in Shewanella oneidensis MR-1
that are not in the same operon and are not coexpressed

We list pairs of genes that are cofit and in the same functional category (TIGR subrole) but are not in the
same operon, near each other in the genome, or coexpressed. For each pair, we manually examined their
annotations and their fitness patterns to determine if they truly had closely-related functions or not. For
pairs of flagellar genes, we also report whether they are coregulated and in the same “class” in Pseudomonas
aeruginosa according to Dasgupta et al. 2003. The data is provided as a tab-delimited file.

References

Allen TE, Herrgard MJ, Liu M, Qiu Y, Glasner JD, Blattner FR, Palsson BO (2003) Genome-scale analysis
of the uses of the Escherichia coli genome: model-driven analysis of heterogeneous data sets. J Bacteriol
185: 6392 9

Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H
(2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.
Mol Syst Biol 2: 2006.0008

Berg J, Willmann S, Lassig M (2004) Adaptive evolution of transcription factor binding sites. BMC' Evol
Biol 4: 42

Birrell GW, Brown JA, Wu HI, Giaever G, Chu AM, Davis RW, Brown JM (2002) Transcriptional response
of Saccharomyces cerevisiae to DNA-damaging agents does not identify the genes that protect against
these agents. Proc Natl Acad Sci USA 99: 8778-8783

Bremer H, Dennnis PP (1996) Modulation of Chemical Composition and Other Parameters of the Cell by
Growth Rate, In Escherichia coli and Salmonella typhimurium: cellular and molecular biology., Washing-
ton D.C.: American Society for Microbiology, 2nd edition, pp. 1553-1569

Bulmer M (1991) The selection-mutation-drift theory of synonymous codon usage. Genetics 129: 897-907

Charoensawan V, Wilson D, Teichmann SA (2010) Genomic repertoires of DNA-binding transcription factors
across the tree of life. Nucleic Acids Res 38: 7364-7377

Chubukov V, Zuleta TA, Li H (2012) Regulatory architecture determines optimal regulation of gene expression
in metabolic pathways. Proc Natl Acad Sci USA 109: 5127 5132

Cruz-Garcia C, Murray AE, Rodrigues JL, Gralnick JA, McCue LA, Romine M, Loffler FE, Tiedje JM
(2011) For (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensis MR-1.
BMC Microbiology 11: 64

Dasgupta N, Wolfgang M, Goodman A, Arora S, Jyot J, Lory S, Ramphal R (2003) A four-tiered transcrip-
tional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Molecular microbiology
50: 809-824

de Daruvar A, Collado-Vides J, Valencia A (2002) Analysis of the cellular functions of Escherichia coli
operons and their conservation in Bacillus subtilis. J Mol Fvol 55: 211-21

Deana A, Belasco JG (2005) Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes
Dev 19: 2526 33

26



Dehal PS, Joachimiak MP, Price MN, Bates JT, Baumohl JK, Chivian D, Friedland GD, Huang KH, Keller
K, Novichkov PS, Dubchak IL, Alm EJ, Arkin AP (2009) MicrobesOnline: an integrated portal for
comparative and functional genomics. Nucleic Acids Res database issue

Dekel E, Alon U (2005) Optimality and evolutionary tuning of the expression level of a protein. Nature 436:
588 92

Deutschbauer A, Price MN, Wetmore KM, Shao W, Baumohl JK, Xu Z, Nguyen M, Tamse R, Davis RW,
Arkin AP (2011) Evidence-based annotation of gene function in Shewanella oneidensis MR-1 using genome-
wide fitness profiling across 121 conditions. PLoS Genet 7: ¢1002385

Eames M, Kortemme T (2012) Cost-benefit tradeoffs in engineered lac operons. Science 336: 911-915

Ermolaeva MD, White O, Salzberg SL (2001) Prediction of operons in microbial genomes. Nucleic Acids Res
29: 121621

Faith J, Driscoll M, Fusaro V, Cosgrove E, Hayete B, Juhn F, Schneider S, Gardner T (2008) Many Mi-
crobe Microarrays Database: uniformly normalized Affymetrix compendia with structured experimental
metadata. Nucleic acids research 36: D866 D870

Fischer E, Sauer U (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal performance of
Bacillus subtilis metabolism. Nat Genet 37: 636 40

Gama-Castro S, Salgado H, Peralta-Gil M, Santos-Zavaleta A, Muniz-Rascado L, Solano-Lira H, Jimenez-
Jacinto V, Weiss V, Garcia-Sotelo J, Lopez-Fuentes A, et al (2011) RegulonDB version 7.0: transcriptional

regulation of Escherichia coli K-12 integrated within genetic sensory response units (Gensor Units). Nucleic
Acids Research 39: D98-D105

Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre
B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss
M, Davis K, Deutschbauer A, et al (2002) Functional profiling of the Saccharomyces cerevisiae genome.
Nature 418: 387-391

Goodman A, Rogers P, Skotnicki M (1982) Minimal medium for isolation of auxotrophic Zymomonas mu-
tants. Applied and environmental microbiology 44: 496

Giiell M, van Noort V, Yus E, Chen W, Leigh-Bell J, Michalodimitrakis K, Yamada T, Arumugam M,
Doerks T, Kiithner S, Rode M, Suyama M, Schmidt S, Gavin A, Bork P, Serrano L. (2009) Transcriptome
Complexity in a Genome-Reduced Bacterium. Science 326: 1268-71

Haugen S, Berkmen M, Ross W, Gaal T, Ward C, Gourse R (2006) rRNA promoter regulation by nonoptimal
binding of o region 1.2: An additional recognition element for RNA polymerase. Cell 125: 1069 1082

Itoh T, Takemoto K, Mori H, Gojobori T (1999) Evolutionary instability of operon structures disclosed by
sequence comparisons of complete microbial genomes. Mol Biol Evol 16: 332 46

Itzkovitz S, Tlusty T, Alon U (2006) Coding limits on the number of transcription factors. BMC Genomics
7: 239

Koskiniemi S, Sun S, Berg O, Andersson D (2012) Selection-driven genome reduction in bacteria. PloS
Genetics 8: e1002787

Langridge G, Phan M, Turner D, Perkins T, Parts L, Haase J, Charles I, Maskell D, Peters S, Dougan G,
et al (2009) Simultaneous assay of every Salmonella Typhi gene using one million transposon mutants.
Genome research 19: 2308-2316

Lemke JJ, Sanchez-Vazquez P, Burgos HL, Hedberg G, Ross W, Gourse RL (2011) Direct regulation of
Escherichia coli ribosomal protein promoters by the transcription factors ppGpp and DksA. Proc Natl
Acad Sci USA 108: 5712 5717

27



Lercher MJ, Pal C (2008) Integration of horizontally transferred genes into regulatory interaction networks
takes many million years. Mol Biol Evol 25: 559-567

Liu Y, Gao W, Wang Y, Wu L, Liu X, Yan T, Alm E, Arkin A, Thompson DK, Fields MW, Zhou J (2005)
Transcriptome analysis of Shewanella oneidensis MR-1 in response to elevated salt conditions. J Bacteriol
187: 2501 7

Lozada-Chévez I, Angarica V, Collado-Vides J, Contreras-Moreira B (2008) The role of DNA-binding speci-
ficity in the evolution of bacterial regulatory networks. Journal of molecular biology 379: 627-643

Lu P, Vogel C, Wang R, Yao X, Marcotte EM (2007) Absolute protein expression profiling estimates the
relative contributions of transcriptional and translational regulation. Nat Biotechnol 25: 117-124

Lynch M (2007) The evolution of genetic networks by non-adaptive processes. Nature Reviews Genetics 8:
803-813

Martinez-Antonio A, Collado-Vides J (2003) Identifying global regulators in transcriptional regulatory net-
works in bacteria. Curr Opin Microbiol 6: 482-489

McCue LA, Thompson W, Carmack CS, Lawrence CE (2002) Factors influencing the identification of tran-
scription factor binding sites by cross-species comparison. Genome Res 12: 1523-32

Milo R, Jorgensen P, Moran U, Weber G, Springer M (2010) BioNumbers—the database of key numbers in
molecular and cell biology. Nucleic Acids Res 38: D750-753

Mitchell A, Pilpel Y (2011) A mathematical model for adaptive prediction of environmental changes by
microorganisms. Proceedings of the National Academy of Sciences 108: 7271-7276

Mitchell A, Romano GH, Groisman B, Yona A, Dekel E, Kupiec M, Dahan O, Pilpel Y (2009) Adaptive
prediction of environmental changes by microorganisms. Nature 460: 220-224

Novichkov PS, Laikova ON, Novichkova ES, Gelfand MS, Arkin AP, Dubchak I, Rodionov DA (2010) Reg-
Precise: a database of curated genomic inferences of transcriptional regulatory interactions in prokaryotes.
Nucleic Acids Res Database issue: D111-8

Paul B, Barker M, Ross W, Schneider D, Webh C, Foster J, Gourse R (2004) DksA: a critical component of
the transcription initiation machinery that potentiates the regulation of rRNA promoters by ppGpp and
the initiating NTP. Cell 118: 311-322

Peterson JD, Umayam LA, Dickinson T, Hickey EK, White O (2001) The Comprehensive Microbial Resource.
Nucleic Acids Res 29: 123-125

Pierce S, Davis R, Nislow C, Giaever G (2007) Genome-wide analysis of barcoded Saccharomyces cerevisiae
gene-deletion mutants in pooled cultures. Nature protocols 2: 2958-2974

Pinchuk G, Ammons C, Culley D, Li S, McLean J, Romine M, Nealson K, Fredrickson J, Beliaev A (2008)
Utilization of DNA as a sole source of phosphorus, carbon, and energy by Shewanella spp.: ecological and
physiological implications for dissimilatory metal reduction. Applied and environmental microbiology T74:
1198-1208

Pinchuk G, Hill E, Geydebrekht O, De Ingeniis J, Zhang X, Osterman A, Scott J, Reed S, Romine M,
Konopka A, et al (2010) Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for
data analysis and hypothesis generation. PLoS computational biology 6: e1000822

Price MN, Arkin AP, Alm EJ (2006) The life-cycle of operons. PLoS Genet 2: €96

Price MN, Dehal PS, Arkin AP (2007) Orthologous transcription factors in bacteria have different functions
and regulate different genes. PLoS Comput Biol 3: el75

Price MN, Dehal PS, Arkin AP (2008) Horizontal gene transfer and the evolution of transcriptional regulation
in Escherichia coli. Genome Biol 9: R4

28



Price MN, Deutschbauer AM, Kuehl JV, Liu H, Witkowska HE, Arkin AP (2011) Evidence-based annotation
of transcripts and proteins in the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. J
Bacteriol 193: 5716 5727

Price MN, Huang KH, Alm EJ, Arkin AP (2005) A Novel Method for Accurate Operon Predictions in All
Sequenced Prokaryotes. Nucleic Acids Res 33: 880 92

Prouty M, Correa N, Klose K (2001) The novel 6°- and o?8-dependent flagellar gene transcription hierarchy
of Vibrio cholerae. Molecular microbiology 39: 1595-1609

Qiu X, Sundin G, Chai B, Tiedje J (2004) Survival of Shewanella oneidensis MR-1 after UV radiation
exposure. Applied and environmental microbiology 70: 6435-6443

Rajewsky N, Socci ND, Zapotocky M, Siggia ED (2002) The evolution of DNA regulatory regions for proteo-
gamma bacteria by interspecies comparisons. Genome Res 12: 298-308

Rogozin 1B, Makarova KS, Murvai J, Czabarka E, Wolf YI, Tatusov RL, Szekely LA, Koonin EV (2002)
Connected gene neighborhoods in prokaryotic genomes. Nucleic Acids Res 30: 2212-23

Saffarini D, Schultz R, Beliaev A (2003) Involvement of cyclic AMP (cAMP) and cAMP receptor protein in
anaerobic respiration of Shewanella oneidensis. Journal of bacteriology 185: 3668 3671

Sasson V, Shachrai I, Bren A, Dekel E, Alon U (2012) Mode of Regulation and the Insulation of Bacterial
Gene Expression. Molecular Cell 46: 399 407

Sengupta A, Djordjevic M, Shraiman B (2002) Specificity and robustness in transcription control networks.
Proceedings of the National Academy of Sciences 99: 2072

Serres M, Riley M (2006) Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1:
predictions versus experiments. Journal of bacteriology 188: 4601-4609

Seshasayee AS, Fraser GM, Babu MM, Luscombe NM (2009) Principles of transcriptional regulation and
evolution of the metabolic system in E. coli. Genome Res 19: 79-91

Shachrai I, Zaslaver A, Alon U, Dekel E (2010) Cost of unneeded proteins in E. coli is reduced after several
generations in exponential growth. Mol Cell 38: 758-767

Sharma CM, Hoffmann S, Darfeuille F, Reignier J, Findeiss S, Sittka A, Chabas S, Reiche K, Hackermuller
J, Reinhardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major human pathogen
Helicobacter pylori. Nature 464: 250 255

Smith JJ, Sydorskyy Y, Marelli M, Hwang D, Bolouri H, Rachubinski RA, Aitchison JD (2006) Expression
and functional profiling reveal distinct gene classes involved in fatty acid metabolism. Mol Syst Biol 2:
2006.0009

Stoebel D, Dean A, Dykhuizen D (2008) The cost of expression of Escherichia coli lac operon proteins is in
the process, not in the products. Genetics 178: 1653—1660

Stone JR, Wray GA (2001) Rapid evolution of cis-regulatory sequences via local point mutations. Mol Biol
FEvol 18: 1764-1770

Tagkopoulos I, Liu YC, Tavazoie S (2008) Predictive behavior within microbial genetic networks. Science
320: 1313 1317

Taniguchi Y, Choi P, Li G, Chen H, Babu M, Hearn J, Emili A, Xie X (2010) Quantifying E. coli proteome
and transcriptome with single-molecule sensitivity in single cells. Science 329: 533 538

Tatusov RL, Natale DA, Garkavtsev IV, Tatusova TA, Shankavaram UT, Rao BS, Kiryutin B, Galperin MY,
Fedorova ND, Koonin EV (2001) The COG database: new developments in phylogenetic classification of
proteins from complete genomes. Nucleic Acids Res 29: 22-8

29



Travers A (1980) Promoter sequence for stringent control of bacterial ribonucleic acid synthesis. Journal of
bacteriology 141: 973-976

van Nimwegen E (2003) Scaling laws in the functional content of genomes. Trends Genet 19: 479-484

Wall ME, Hlavacek WS, Savageau MA (2004) Design of gene circuits: lessons from bacteria. Nat Rev Genet
5: 34 42

Wessely F, Bartl M, Guthke R, Li P, Schuster S, Kaleta C (2011) Optimal regulatory strategies for metaholic
pathways in Escherichia coli depending on protein costs. Mol Syst Biol 7: 515

Wolf Y, Rogozin IB, Kondrashov AS, Koonin EV (2001) Genome alignment, evolution of prokaryotic genome
organization, and prediction of gene function using genomic context. Genome Res 11: 356-72

30



